Objective: Commercialize the process of silica sand (bio-silica) extraction from rice husk food waste. 50 GWh/year of energy will be recovered from this process via its gasifier hot flue gas and used to achieve plant self-sufficiency.

Plant Capacity: 15,460 tonnes/yr of Silica

Novelty

1. Fluidized bed Gasifier Reactor: Large throughput compared to industry average
2. Silica Extraction process: Developed from a lab-scale paper
3. Multi-Effect Evaporator: Used for intermediate product recovery and re-use

Social Need

- Respond to Silica Sand deposit shortage, and slow the global rise in Illegal Sand Mining.
- Re-purpose Agricultural Biowaste in high rice-producing countries.
- Uses in Agrochemical, Food and Rubber Industries due to high chemical stability, absorption capacity, and anti-caking properties.

Environmental Assessment

- Solid
 - 2500 kg/hr of soda ash solution at pH 11
 - Reduce to pH 6 - pH 9 according to global IFC standard
 - Recover soda ash and reuse wash water

- Liquid
 - 1 tonne/day of tar extracted from the gasifier
 - Sell as water-repellent coating for boats, ships, and roofs
 - 2,000 tonnes/yr of CO2 release.

Economics

- **$750/tonne Silica**
 - **Silica** $11.5M
 - **Electricity** $3M+
 - **REVENUE** $14.5M

- **Profit**: $6M/year
- **IRR**: 16.9%
- **NPV**: $47M
- **PAYBACK**: 5 years

Plant Layout

- Plant Size: 100m x 166m

- **Legend**
 - Office
 - Warehouse
 - Energy Generation
 - Gas Cleaning
 - Silica Extraction
 - Rice Farm
 - BioSilica Storage
 - QA/QC
 - Fire Station
 - Control Room
 - Master Point

Introduction

- **Process**
 - Rice Husk
 - Gasification
 - Gas Cleaning
 - Silica Extraction
 - Silica Purification
 - Energy Generation
 - Electricity

Bio-Silica Production and Energy Recovery from Rice Husk Waste

- **Group P2 - Aidan Kiel, Adib Zakwan Zakaria, Bashirah Salami, Clive Indrawan, Fortune Komolafe, Joya Yamagishi, Sam Oladoyinbo**
- **Department of Chemical & Biological Engineering**

- **Bio-Silica Uses in Agrochemical, Food and Rubber Industries**
 - due to high chemical stability, absorption capacity, and anti-caking properties.
- **Respond to Silica Sand deposit shortage, and slow the global rise in Illegal Sand Mining.**

- **Novelty**
 - 1. Fluidized bed Gasifier Reactor: Large throughput compared to industry average
 - 2. Silica Extraction process: Developed from a lab-scale paper
 - 3. Multi-Effect Evaporator: Used for intermediate product recovery and re-use

- **Social Need**
 - Respond to Silica Sand deposit shortage, and slow the global rise in Illegal Sand Mining.
 - Re-purpose Agricultural Biowaste in high rice-producing countries.
 - Uses in Agrochemical, Food and Rubber Industries due to high chemical stability, absorption capacity, and anti-caking properties.

- **Environmental Assessment**
 - Solid
 - 2500 kg/hr of soda ash solution at pH 11
 - Reduce to pH 6 - pH 9 according to global IFC standard
 - Recover soda ash and reuse wash water
 - Liquid
 - 1 tonne/day of tar extracted from the gasifier
 - Sell as water-repellent coating for boats, ships, and roofs
 - 2,000 tonnes/yr of CO2 release.

- **Economics**
 - **$750/tonne Silica**
 - **Silica** $11.5M
 - **Electricity** $3M+
 - **REVENUE** $14.5M
 - **Profit**: $6M/year
 - **IRR**: 16.9%
 - **NPV**: $47M
 - **PAYBACK**: 5 years

- **Plant Layout**
 - Plant Size: 100m x 166m

- **Legend**
 - Office
 - Warehouse
 - Energy Generation
 - Gas Cleaning
 - Silica Extraction
 - Rice Farm
 - BioSilica Storage
 - QA/QC
 - Fire Station
 - Control Room
 - Master Point